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COMPARATIVE GENOMICS

Biology may be viewed simplistically as a product of the processes of development, metabolism
and aging. These processes are regul ated/determined/occur due to an interaction of
environmental, stochastic, and genetic factors.

Completion of the initial goals of the genome project will provide maps and sequence of human
and model organisms. Thisinformation set contains a wealth of information about the genetic
contribution to biology. How can data relevant to the biological goals of the genome project be
extracted from this mass of sequence? Perhaps more to the point, what information should be
extracted? Clearly, life scientists want to use this information to understand basic processes of
biology in normal and (abnormal) disease states.

A complete, base-perfect human genome sequence provides few direct links to human biology.
(For example, the “normal” human genome sequence is atool for disease gene finding, but
presumably will contain few or no variants expressed as major Mendelian mutations). Model
organisms provide an important part of this critical link in Genomics, as they have throughout
the history of Biology.

1. Biology (mouse:man)
» what is phenotype? can mouse and human phenotypes be “the same”? (conserved
genetic pathways/ conserved function/ conserved structures)
* development — metabolism — aging
» evolution (“development” of species)
2. Learning from evolution
e comparative sequence
e comparative structure/ process

3. Why mouse?
* genetics— unique genetic structures not found in nature, nor elsewhere in the
laboratory
* Mousevs. rat: use the appropriate model system; oneis not inherently “better” than
the other

» ability to create new genotypes and phenotypes
4. Building custom phenotypes and genotypes

* mutagenesis

» transgenesis/ targeted gene modification/ chromosome engineering
5. QTL/ modifiers

* real genetics

» gpecial genetic tools

e examples



In this lecture we will consider:
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Genetic structures in mice not found in nature.
. Relating mouse and human: comparative mapping and

. Genetics meets genomics: Mapping quantitative trait loci
. Make your own genotype:

Transgenesis, gene targeting, chromosome engineering.

5. Make your own phenotype: Mutagenesis.

1. Special Genetic Structures in Mice

1. Inbred mice —known genetics of individuals and F1's; limited (comprehensively definable)
variation in crosses in further generations. Practical benefits of short generation time, compact

housing, macro-environment highly controlled in SPF colonies.

AABB

non-recombinant

recombinant

Because phase is known, recombinants are unequivocally distinguished from non-recombinants.
Individuals in subsequent generations vary genetically, but a maximum of two alleles can be

present in at any given locus.
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Benefits of RI strains:
*  “Pre-genome scan”
* Reassay the “same” individual many times (find
* true mean and deviation for variable traits)
» Highly beneficial for quantitative traits
e Stock of genetic variation (recombinant congenic
* mice)
Limitations of RIs:
* Small strain sets have limited statistical power.
* Mappingisrelatively low resolution on the first pass.

3. Congenic mice can be used to confirm and refine localizations made with low confidence
initially.

Independent confirmation of Mol2 on Chrl

MMU 1 MMU 1 MMU 1
36.1cM Mol 2
47 cM
STRAIN BALB/cANFCR C.D2-VIL6 DBA/2N
RESPONSE 0% 79% + 33% (n=6) 100%
Low Responder High Responder High Responder

Matesic, LE, EL Niemitz, A De Maio, and RH Reeves. 2000. Quantitative trait loci modulate neutrophil infiltration
in the liver during LPS-induced inflamnmation. FASEB Journal (November, 2000)3. QTL vs. Mutagenesis
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Compar ative Genetics, Mouse vs. Human

Compar ative mapping
http://www.nchi.nlm.nih.gov/Homol ogy/
http://www.informatics.jax.org/
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Compar ative sequence analysis
Comparative Genome Analysis Tools (CGAT) can be downloaded from http:/inertia.bs.jhmi.edu/
roger/CGAT/CGAT.html. Seealso Rosettaand Glass at http://www.theory.lcs.mit.edu/crossspecies.

CGAT: Lund J, Chen F, Hua A, Roe B, Budarf M, Emanuel BS, Reeves RH. Comparative
sequence analysis of 634 kb of the mouse chromosome 16 region of conserved synteny with the
human velocardiofacial syndrome region on chromosome 22g11.2. Genomics. 2000 Feb
1,63(3):374-83.

Also:

Bouck JB, Metzker ML, Gibbs RA. Shotgun sample sequence comparisons between mouse and
human genomes. Nat Genet. 2000 May;25(1):31-3.

Rosetta: Batzoglou S, Pachter L, Mesirov JP, Berger B, Lander ES. Human and mouse gene
structure: comparative analysis and application to exon prediction. Genome Res. 2000
Jul;10(7):950-8.

Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W.
PipMaker--aweb server for aligning two genomic DNA sequences. Genome Res. 2000
Apr;10(4):577-86.
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Comparative sequence anslysis is invaluable for finding and defining the boundaries of genes
and other conserved features. Let evolution work for you! 80 million years of conservation

can'l be wrong!
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Comparative sequence +/- algorithmic predictions
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Fig. 5. Comparison of exon prediction approaches from a 500kb segment of
conserved synteny between human Chr 22 and mouse Chr 16 containing 153
exons from 18 genes (Lund et al., ). Sequence comparison identifies only
conserved segments, eliminating the false positive predictions in algorithmic
approaches. In conjunction, these approaches identify at least a portion of every
gene with no false positive predictions.
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Mapping Quantitative Trait Loci (QTL)

1. Genomic genetics- why is the genome complex?

How does it work (how do genes in many variant combinations in a population act
together) to maintain homeostasis in the face of infinitely complex and dynamic challenges from
the environment?

2. Plants have thelead. Thetomato asamodel for mammalian genetics.

Frary A, Neshitt TC, Grandillo S, Knaap E, Cong B, Liu J, Médller J, Elber R, Alpert KB, Tanksley SD. fw2.2: a
guantitative trait locus key to the evolution of tomato fruit size. Science. 2000. 289(5476):85-8.

3. Geneinteractions

Genotype at Hpi2, Chromosome 5
A/A A/B B/B Totals

A/A 335 +46| 356 +484 356 +69 350 +3.0

9 (12) (8
Genotype at Hpil, A/B 289 +50/ 357 +3.0f 378 +4.8 349 +23

Chromosome 13 (11) (40) (11)
B/B" 425 +4.1| 447 +53| 69.9° +55 548 +43
2) (14) (11)

Totals| 32.0 +3.2| 37.6 +23] 490 +4.3| 395 +19
% Avg. number of PMN per h.p.f. + s.e. are given for (n) animals of each genotype
class.” Mice with a B/B genotype at Hpil showed significantly higher PMN infiltration
values than other Hpil genotypes (p=1.22 X 10-4, t-test assuming unequal variance)®
Mice with a B/B genotype at both Hpil and Hpi2 showed significantly higher PMN
infiltration than other genotype classes (p=7.83X10-5, t-test assuming unequal variance)

Matesic, LE, EL Niemitz, A De Maio, and RH Reeves. 2000. Quantitative trait loci modulate neutrophil infiltration
in the liver during LPS-induced inflammation. FASEB Journal (November, 2000)3. QTL vs. Mutagenesis

4. QTL mapping in human beings (behavioral disorders, neuropsychiatric disease, diabetes,
metabolic regulation).

* Very high marker density

* Very large numbers of patients

* Precisediagnosis
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4. Transgenesis/ gene-targeting/ chromosome engineering

1. “Knockouts’ (null alleles)

2. “Knock-ins” (mutations, reporters), tissue-targeted and conditional mutations
Shin MK, Levorse M, Ingram RS, Tilghman SM. The temporal requirement for endothelin receptor-B signalling
during neural crest development. Nature. 1999 Dec 2;402(6761):496-501.

3. Chromosome engineering
Ramirez-Solis R, Liu P, Bradley A. Chromosome engineering in mice. Nature. 1995 378(6558):720-4.

Cre/lox-mediated chromosomal translocation

@ [
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. B B
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4. Whole genome gene deletion strategies

Zheng B, Mills AA, Bradley A. A system for rapid generation of coat color-tagged knockouts and defined
chromosomal rearrangements in mice. Nucleic Acids Res. 1999 27(11):2354-60.

Zambrowicz BP, Friedrich GA, Buxton EC, Lilleberg SL, Person C, Sands AT. Disruption and sequence
identification of 2,000 genes in mouse embryonic stem cells. Nature. 1998 392(6676):608-11.

xerox Sands diagram
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5. Mapping Genome Function: Creating Phenotypes using
Mutagenesis

Mutagenesis provides a means of generating new phenotypes in mouse.

Justice MJ, Zheng B, Woychik RP, Bradley A. Using targeted large deletions and high-efficiency N-ethyl-N-
nitrosourea mutagenesis for functional analyses of the mammalian genome. Methods. 1997 Dec;13(4):423-36.
Review.

MJ Justicein 1J Jackson and CM Abbott, Mouse Genetics and Transgencis. A Practical Approach. 2000. Oxford
University Press, 299 pp.

1. Sources of mutations
spontaneous, E-5, al types of mutations;
radiation, frequency is dose dependent, primarily chromosomal rearrangement;
chemical, ENU is highest giving point mutations at a frequency of 1/600 gametes per
locus at some loci
2. Screens
specific locus test
MutaMouse/ Big Blue
SHIRPA
special targeted screens
dominant vs. recessive (1% vs. 3" generation)
in combination with deletion (recessivesin first generation)

3. targets mutation types
visible single gene dom. or recessive
alelic series
biochemical pathway
sensitization (Shediovsky A, McDonald JD, Symula D, Dove WF. Mouse models of human
phenylketonuria. Genetics. 1993 Aug;134(4):1205-10.)

4. mode of action, transfer ethyl group to a number of residues on all four nucleotides, including
ethylation of phosphate groups that |eads to mispairing;

most frequent in mouse are AT -> TA (transversion) and AT -> GC (transition), but
specific frequencies are locus specific

ENU affects primarily spermatogonia (stem cells) —freg. in sperm and in females are low

5. Breeding schemes:

a. balancer;

b. recessive over deletion;

c. modifier (dominant mutation modifies another mutation)

d. sensitization (recessive mutations in genes that interact in a pathway/ allelic
non-complementation)

6. Large centers, see Trans-NIH Mouseinitiative http://www.nih.gov/science/model s'mouse/index.html

Mouse Genome Center, Harwell http://www.mgu.har.mrc.ac.uk/mutabase/
ENU Mutagenesis Programme



Reeves, Comparative Genomics

We are engaged in a major ENU mutagenesis programme that incorporates the systematic and semi-
guantitative screening protocol - SHIRPA. Spanning the next three years, a genome-wide screen for dominant
mutations will be carried out. BALB/c males mutagenised with 160-200 mg/kg ENU are being mated to C3H
females and 40,000 of their F1 progeny will be characterised using the SHIRPA protocol. From screening results to
date, it appears that approximately 1% of the F1 population represent inherited mutations. This number should
increase as additional screens are added to the programme. It is planned to map around 50 mutations from this
dominant screen per year, with a proportion undergoing more in-depth characterisation.
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http://www.mgc.har.mrc.ac.uk/mutabase
http://www.mgc.har.mrc.ac.uk/cgi-bin/mail_page.pl?mutabase&L&inf&Mutabase+Team
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=7367
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=7367
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http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=7367
http://www.mgu.har.mrc.ac.uk/shirpa-bin/mail_page.pl?mutabase&L&reqm&Mutabase+programme&Mutagenesis+Inherited+Phenotype+-+MUTN/4.2a+GENA/6
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=23762
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=23762
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=23762
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=23762
http://www.mgu.har.mrc.ac.uk/shirpa-bin/mail_page.pl?mutabase&L&reqm&Mutabase+programme&Mutagenesis+Inherited+Phenotype+-+MUTN/30.2i+GENA/15
http://www.mgu.har.mrc.ac.uk/shirpa-bin/mail_page.pl?mutabase&L&reqm&Mutabase+programme&Mutagenesis+Inherited+Phenotype+-+MUTN/30.2i+GENA/15
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=7269
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=7269
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=7269
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=7269
http://www.mgu.har.mrc.ac.uk/shirpa-bin/mail_page.pl?mutabase&L&reqm&Mutabase+programme&Mutagenesis+Inherited+Phenotype+-+MUTN/3.2a+GENA/22
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=6672
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=6672
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=6672
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=6672
http://www.mgu.har.mrc.ac.uk/shirpa-bin/mail_page.pl?mutabase&L&reqm&Mutabase+programme&Mutagenesis+Inherited+Phenotype+-+MUTN/61.7e+GENA/25
http://www.mgu.har.mrc.ac.uk/shirpa-bin/mail_page.pl?mutabase&L&reqm&Mutabase+programme&Mutagenesis+Inherited+Phenotype+-+MUTN/61.7e+GENA/25
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=6663
http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=6663
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http://www2.mgu.har.mrc.ac.uk/servlet/Mutabase.SHIRPA.HTML.roShowSHIRPAData?UID=6663
http://www.mgu.har.mrc.ac.uk/shirpa-bin/mail_page.pl?mutabase&L&reqm&Mutabase+programme&Mutagenesis+Inherited+Phenotype+-+MUTN/61.6a+GENA/26
http://www.mgu.har.mrc.ac.uk/shirpa-bin/mail_page.pl?mutabase&L&reqm&Mutabase+programme&Mutagenesis+Inherited+Phenotype+-+MUTN/61.6a+GENA/26
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German ENU Mutagenesis Center http://www.gsf.de/isg/groups/enu-mouse.htm

We plan to use two different strategies in order to screen for new mouse mutants: A dominant and a
recessive screen. In both cases, male mice are injected with ENU and then mated to females in order to produce F1
founders. These F1 mice can either be analyzed directly for dominant mutations or bred further to subsequently
study recessive phenotypes. Very large numbers of mice can be analyzed in adominant F1 screen. In this case, all
F1 mice are screened for phenotypic abnormalities. If the animals might die during the screening procedure, F2 mice
are produced and analyzed. F1 mice are preserved for breeding the potential mutants. The screen for recessive
mutations will involve two generations of breeding. From F1 founder males, F2 female offspring are raised, half of
which are heterozygous for the newly induced mutations. Backcrossing F2 to the F1-founder male or intercrossing

the F2 isthen carried out to identify recessive mutant phenotypes among the F3 offspring.
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http://www.mgc.har.mrc.ac.uk/mutabase
http://www.mgc.har.mrc.ac.uk/cgi-bin/mail_page.pl?mutabase&L&inf&Mutabase+Team

